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Abstract  

In this paper we propose three exponential type compromised imputation methods for estimating the population mean 

based upon an auxiliary variable in simple random sampling when some observations are missing. They are compared 

with other imputation methods such as mean method, ratio method and compromised method of imputation. Our 

proposed estimators are better than other above mentioned estimator. To support the discussed results the relative 

efficiencies of the estimator w.r.t.these estimators have been obtained using empirical data. 

Keywords: Imputation methods, Bias and Mean square error, missing data, relative efficiency. 

1. INTRODUCTION  

In survey sampling situations, auxiliary information is generally used to improve the precision or accuracy of the 

estimator of unknown population parameter of interest under the assumption that all the observations in the sample are 

available. But in many survey sampling situations, this assumption is not true .This is the case of incomplete information 

which may arise due to some non- response in the given sample .Incomplete information is very common in the studies 

related to medical research, market research surveys, opinion polls socio economic investigations etc. 

In statistical inference, sometimes the efficiency of parameters estimation may be reduced when some observations from 

the sample units are missing .Our aim is to try to impute the missing observations. To deal with missing values 

effectively Kalton et al (1981) and Sande (1979) suggested imputation methods that make an incomplete data set 

structurally complete and its analysis simple. Imputation may also be carried out with the aid of an auxiliary variate if it 

is available. For more about the missing data and the methods of imputation one can refer    Rueda and Gonzalez (2008), 

Rao and Sitter (1995), Gonzalez et al (2008), Baraldi and Enders (2010), Bouza (2008). Based on auxiliary variable, 

recently Singh and Horn (2000) and Singh et al (2014) suggested some compromised method of imputation. 

2. THE PROBLEM AND NOTATIONS: 
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Let a simple random sample S of size n without replacement be drawn from a finite population ),...,,( 21 NYYYU  of 

size N and with study characteristic Y. Let ),( XY be the population mean of the study variable Y and auxiliary variable 

X respectively. It is presumed  

that the sample consists of r responding units (r < n) belonging to a set A and (n-r) non responding units belonging to a 

set A
C
. Further let for every unit Ai , the value iy is observed and for the unit 

CAi ,the value iy is missing for 

which suitable imputed value is to be derived .For this purpose, the ith value of the auxiliary variable is used as a source 

of imputation for missing data when 
CAi . 

In what follows, we shall use the following notations: 

Z: Stands for either variable Y or variable X. 

:nz Sample mean based on n observations for variable Z. 

:rz Sample mean of the responding units based on r observations for the variable Z. 

:2

ZS Population mean squares for the variable Z. 

ZC : Coefficient of variation (CV) for the variable Z; 
Z

S
C Z

Z  . 

 is the coefficient of correlation between the variable Y and X in the population . 

iy. : Imputed value for the ith value of )...2,1( niyi   

:,,,,, nrNrNn  Finite population corrections (fpc); 



























nrNrNn

11
,

11
,

11
respectively. 

3. SOME IMPUTATION STRATEGIES 

Before suggesting the proposed imputation strategy, we shall mention here some existing imputation strategies for 

readiness of the material which has a direct relevance with the present work. We shall denote by (D, T) denote a 

sampling strategy where D stands for simple random sampling without replacement sampling scheme and T for an 

estimator for population meanY . Followings are the some imputation methods and corresponding sampling strategies: 

3.1 :),( ryD Mean method 

Here   










C

r

.
A i if    y

A i if    i

i

y
y                                                                                                             (1) 

The corresponding point estimator and its bias, B(.) and mean square error (MSE), M(.) are derived as 
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r

si
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1
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

                                                                                                                  (2) 

0)( ryB                                                                                                                               (3) 

22

,)( YNrr CYyM                                                                                                                   (4) 

3.2 ),( RATyD : Ratio method 












C

i

.
A i if    xb̂

A i if    i

i

y
y                                                                                                              (5) 

where   









Ai

i

Ai

i

x

y

b̂  

Then the point estimator, its bias and MSE are given by: 

r

n
rratio

x

x
yy                                                                                                                             (6) 

 YXXYXnrratio CCCYyB   2

,)(                                                                                             (7) 

 YXXYXnrYNrratio CCCYCYyM  2)( 22

,

22

,                                                                    (8) 

3.3 ),( COMPyD : Compromised method (Singh and Horn, 2000) 














C

i

i

.

A i if            xb̂ )-(1

A i if    xb̂)-(1



 i

i

y
r

n

y                                                                                           (9) 

The point estimator is  

r

n
rrCOMP

x

x
y)1(yy         ;  being a suitable constant                                               (10) 

 YXXYXnrCOMP CCCYyB   2

,)1()(                                                                              (11) 

 YXXYXnrYNrCOMP CCCYCYyM  )1(2)1()( 222

,

22

,                                         (12) 
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It can be seen that the estimator has minimum MSE for 

X

Y

C

C
 1  for which 

 22

,,

2

min )()( YnrNrCOMP CYyM                                                                                     (13) 

 

4. PROPOSED IMPUTATION STRATEGY )3,2,1,,( iTD i  

    Motivated with Singh et al. (2014) and Bahl and Tuteja (1991), we here proposed the following exponential-type 

estimators  

                                
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ykykT exp)1(3                                                   (16) 

where k is a suitably chosen constant to be determined under certain conditions. 

5. PROPERTIES OF PROPOSED IMPUTATION STRATEGY 

In relation to bias, MSE, optimum value of the parameter k and corresponding minimum MSE, we have the following 

theorems: 

5.1 Theorem1: 

The bias and MSE of the proposed strategy ),( 1TD to the terms of order )( 1nO are given by 

        







 XYNnXNn CCCYkTBias  ,

2

,1
2

1

8

3
1                                                            (17) 

     
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




 YXNn

X
NnYNr CCk

C
kCYTM  ,

2

,

22

,

2

1 )1(
4

)1(                                       (18) 

The minimum MSE of  1T occurs when 

X

Y

C

C
k 21 for which MSE reduces to

    22

,,

2

.min1 YNnNr CYTM                                                                                        (19)                                                                                 

The proof of the theorem is given in the Appendix 
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5.2 Theorem2: 

The bias and MSE of the proposed strategy ),( 2TD to the terms of order )( 1nO are given by 
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The minimum MSE of  2T occurs when 

X

Y

C

C
k 21 for which MSE reduces to 

    22

,,

2

.min2 ( YnrNr CYTM                                                                                               (22) 

The proof of the theorem is given in the Appendix 

5.3 Theorem3: 

The bias and MSE of the proposed strategy ),( 3TD to the terms of order )( 1nO are given by 

               
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 The minimum MSE of  3T occurs when 

X

Y

C

C
k 21 for which MSE reduces to 

             22

,

2

.min3 1 YNr CYTM                                                                                         (25)                                                       

The proof of the theorem is given in the Appendix 

6. COMPARISON OF DIFFERENT STRATEGIES 

(i)The estimator ratioy based on the ratio method of imputation is more efficient than ry if  

0Rfor  2 and  0R  2  
Y

X

Y

X

C

C
for

C

C
                                                                      (26) 

(ii) is 1T more efficient than ry if 
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C
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
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                                                        (27) 

Further it can be seen that min1)(TM is always smaller than )( ryV . In similar, 2T and is 3T more efficient than ry  

(iii) is 1T more efficient than ratioy if 

       0)2( 22

,

222

,  YXXnrYNn CCCYCY                                                                 (28) 

(iv) is 2T more efficient than ratioy if 

                             0
22

,  XYnr CCY                                                                                (29) 

(v) is 3T more efficient than ratioy if  

            0
22

,

222

,  XYnrYNn CCYCY                                                                         (30) 

(vi) 1T is more efficient than compy   if 

0)()( 1  TMyM optCOMP  

222

,, )( YNrNn CY  >0                                                                                              (31)                                    

(vii) 2T is more efficient than compy   if 

0)()( 2  TMyM optCOMP  

       )()( 2TMyM optCOMP                                                                                           (32) 

(viii) 3T is more efficient than compy      if 

0)()( 3  TMyM optCOMP  

                                                                                  (33)                                                                                                                 

 

(ix) It is now desirable to compare the three suggested strategies for their performances .We have 

(x)D1= MinTM )( 2 - MinTM )( 1 =   22

,,  YnrNn C                                                                      (34) 

 21 n better tha is   So, TT  

0222

,  YNn CY 
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Therefore, strategy ),( 1TD would be preferable over ),( 2TD if the number of respondents in the sample is more than 

fifty percent, which generally occurs in most of the surveys. 

(xi) D2= MinTM )( 1 - MinTM )( 3  =
22

, Ynr C                                                                                (35) 

which is always positive. Therefore strategy  )T(D, 3 is always better than strategy  . )(D, 1T  

(xii)D3= MinTM )( 2 - MinTM )( 3 =
22

, YNn C                                                                                (36) 

which is always positive. Therefore strategy . )(D, 3T is always better than strategy  . )(D, 2T  

Combining the results derived above, one can say that if the sample does not contain more than fifty percent non – 

respondents, then the following results holds. 

                                             )()()( 213 TMTMTM                                                          

7. EMPIRICAL STUDY 

We consider the data given in Shukla et al (2011). A generated artificial population of size N = 200 containing values of 

main variable Y and auxiliary variable X. Parameters of this are given below: 

Y = 42.485; X = 18.515; 
2
YS = 199.0598; 

2
XS = 48.5375; 

 = 0.8652; XC = 0.3763; YC = 0.3321;  

Using random sample of size n = 20;   f = 0.1 by SRSWOR. 

The condition of bias and MSE of the existing and proposed estimator are computed based of 30,000 repeated samples 

drawn by SRSWOR from population N = 200. These computations, with respect to ry , are given in tables1 and 2 where 

efficiency measurement is considered as 
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R.  
 
 yM

yM
ye r

ˆ
ˆ  *100 

with  yM ˆ   the mean squared error of estimator ŷ . 

The simulation procedure contains following steps : 

Step 1:  Draw a random sample of size 20 from the population of N = 200 by SRSWOR. 

Step 2: Drop down 5 units randomly from each sample corresponding to Y. 

Step 3:  Compute and impute the dropped units of Y with the help of proposed methods and 

available methods. 

Step 4:  Repeat the above steps 30,000 times, which provides multiple sample based estimates 1ŷ , 2ŷ

, 3ŷ ,…….. 30000ŷ . 

Step 5:   Bias of  1ŷ  is obtained by 

             



30000

1

ˆ   
30000

1
ˆ

i
i YyyB  

Step 6: M.S.E.  of ŷ  is computed by 

    
230000

1

ˆ  
30000

1
ˆ 




i

i YyyM

 

 

Table-1 Bias, MSE, Relative efficiency of strategies 

Estimator Min M(.) R.E Bias (.) 

ry  
12.1236 100 0.2683 

ratioy  
9.7669 124.12 0.3216 

COMPy  
9.5882 126.44 0.4119 
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Table-2 Bias, MSE, Relative efficiency of strategies 

Estimator Min M(.) R.E Bias (.) 

1T  5.2811 229.56 -0.0070 

2T  9.5862 126.46 0.0043 

3T  2.8866 411.99 -0.0053 

 

 

8. CONCLUSIONS  

The work presented a compromised imputation strategy and corresponding point estimator, utilizing the 

information on an auxiliary variable on the basis of ETE. On the basis of population, a comparative study for the 

efficiency of the proposed strategy with some existing strategies showed that it is always preferable over other 

estimators 
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Appendix 

We have 
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 Now using the large sample approximations 1
Y

yr , 1 
X

xr
 1   and 

X

xn
 .With  the concept of 

two- phase sampling and following Rao and Sitter (1995) mechanism of MCAR, for given r and n, we have. 
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The estimator  1T ,  2T and )( 3T in terms of,  and   up to first order of approximation, could be expressed as: 
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The expression (14), (15) and (16), obtained assuming that 1 || 1and ||,1 ||   , are  valid assumptions. Taking 

expectation of both the sides of (14), (15) and (16) and realising that 3,2,1,)()(  iYTETB ii  .we have the 

expressions (17), (20) and (23).  
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Similarly, squaring the expression (14), (15) and (16), neglecting the terms of    , and greater than two and realising 

that  

                   3,2,1      ,  ][2][ 22
 iTEYYTETM iii     

The expressions (18), (21) and (24) could be obtained applying large sample approximation results as given above.                          

                           


