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ABSTRACT 

The  )(exp  -expansion method is a promising method for finding exact traveling wave solutions to nonlinear 

evolution equations in physical sciences. In this article, we use the  )(exp  -expansion method to find the exact 

solutions for the nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation and the good Boussinesq equations. 

Many solitary wave solutions are formally derived. Being apparent, short and less limiting, this method can also be 

applied to many higher-dimensional NLEEs. 

Keywords:  )(exp  -expansion method; Nonlinear evolution equation; Zakharov-Kuznetsov-Benjamin-Bona-

Mahony equation; good Boussinesq equation; Homogeneous balance; Traveling wave solutions. 

 

1. INTRODUCTION 

Nonlinear evolution equations (NLEEs) hold great importance in several parts of mathematical and physical sciences. 

Obviously all the fundamental equations associated to physical and engineering problems are essentially nonlinear. A 

large amount of complex physical phenomena appears in fluid mechanics, quantum mechanics, plasma physics, optical 

fibers, biology, solid state physics, chemical kinematics can be described by NLEEs. In order to better understand the 

internal mechanism of nonlinear phenomena it is necessary to look for the exact traveling wave solution of NLEEs. Thus 

investigating exact traveling wave solutions of NLEEs is becoming successively attractive by the researchers who are 

concerned in nonlinear sciences. NLEEs are very difficult to solve evidently. In fact there are no general techniques that 

work for all such equations. Each individual equation has to be studied as a separate problem. For this reason, many new 
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techniques for finding exact travelling wave solutions of NLEEs still have drawn a huge concentration by various groups 

of scientists.  As a result, a lot of influential and significant methods have been established. Such as, the homogenous 

balance method [1, 2], the Hirota’s bilinear transformation method [3, 4], the auxiliary equation method [5], the trial 

function method [6], the Jacobi elliptic function method [7], the tanh-function method [8-10], the homotopy perturbation 

method [11-13], the inverse scattering method [14], the sine-cosine method [15, 16], the truncated Painleve expansion 

method [17], the variational method [18-21], the Backlund transformation [22], the Exp-function method [23-25], the 

asymptotic method [26], the non-perturbative method [27], the )/( GG -expansion method [28-35], the improved

)/( GG expansion method [36], the F-expansion method [37], the generalized Riccati equation [38] method, the Miura 

transformation [39], the extended F-expansion method [40], the weierstrass elliptic function method [41], the 

))(exp(  -expansion method [42, 43] and so on. 

The objective of this article is, we will use the ))(exp(  -expansion method to the nonlinear Zakharov-Kuznetsov-

Benjamin-Bona-Mahony equation and the good Boussinesq equations. In the literature researched, these two equations 

have not been studied by this method. The solution procedure of this method is simple, explicit, and easily be extended to 

all kinds of NLEEs. The subject matter of this method is that the traveling wave solutions of a nonlinear evolution 

equation can be expressed by a polynomial in ))(exp(  , where )(  satisfies the ordinary differential equation 

(ODE): 

    ,)(exp)(exp)(  
     

(1) 

where .tVx
 
The degree of the polynomial can be determined by considering the homogeneous balance between 

the highest order derivatives and nonlinear terms and the coefficients of the polynomial can be obtained by solving a set 

of simultaneous algebraic equations.  

Research on finding exact traveling wave solutions to the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) 

equation and good Boussinesq equations have been done by several researchers. As for example, Lanlan and Huaitang 

[44] engaged new )/( GG expansion method to investigate the ZKBBM equation for constructing exact solutions, 

Mohyud-Din et al. [45] used the Exp-function method for obtaining solitary and periodic solutions of the good 

Boussinesq equation. 

The consequence of this work is that the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation and the 

good Boussinesq equations are considered to construct new exact traveling wave solutions including solitons, periodic 

and rational solutions by applying the   exp  expansion method.  

The article is prepared as follows. In section 2, we describe briefly the  )(exp  -expansion method. In section 3, we 

apply this method to investigate the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation and the good 

Boussinesq equations.  Finally in section 4, some important conclusions are given. 

 

2.  METHODOLOGY 

In this section, we explain the  )(exp  -expansion method for finding traveling wave solutions of nonlinear 

evolution equations. Let us consider the nonlinear partial differential equation of the form 

  .0,.....,,,,, xxxtttxt uuuuuuP                              (2) 
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Here ),( txu is an unknown function, P  is a polynomial in  txu ,  and its various partial derivatives, in which the 

highest order derivatives and nonlinear terms are involved. In order to solve (2) by using the  )(exp  -expansion 

method we have to complete the following steps: 

Step1:  Combining the real variables x  and t  by a compound variable   , we assume 

   )(),( utxu  , , tVx
         

                    (3) 

where V is the speed of the travelling wave. Using the traveling wave variable (3), Eq. (2) changes to an ODE for 

 uu  : 

  0.....,,,,  uuuuQ ,                  (4) 

where Q  is a function of  u  and its derivatives, prime denotes the derivative with respect to .  

Step 2: Suppose the solution of (4) can be expressed by a polynomial in  )(exp   as follows: 

      




1

1 ))(exp())(exp(
n

n

n

nu 
    

(5) 

where ,, 1nn   and V are constants to be determined later such that 0n  and    satisfies equation (1). The 

unwritten part of (5) is also a polynomial in  )(exp  .  

Step 3: The positive integer n  can be determined by considering the homogeneous balance between the highest order 

linear terms and nonlinear terms of the highest order appearing in (4). Our solutions now depend on the parameters 

involved in (1): 

Case 1: 042    and 0 ,
  

   













































 





 1

2
2

2

4
tanh4

2

1
ln c .   (6) 

where 1c  is a constant of integration. 

Case 2:  042    and 0 ,
 

   












































 1

2
2

2

4
tan4

2

1
ln c





 .      (7) 

Case 3: 0  and ,0
 

 
   











1exp
ln

1c


 .                 (8) 

Case 4:  042   , ,0  and ,0
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 
  
  













1

2

1 22
ln

c

c




 .                  (9) 

Case 5:   0  and ,0
 

   1ln c  .                 (10) 

Step 4: Inserting (5) into (4) and using (1), the left hand side is converted into a polynomial in  )(exp  . Equating 

each coefficient of this polynomial to   zero, we obtain a set of algebraic equations for  ,,, Vn   and  . 

Step 5: Eventually solving the algebraic equations obtained in Step 4 with the aid of computer algebra system, we obtain 

the values of the constants  ,,, Vn   and  . Substituting Vn ,, and the general solutions of (1) into solution 

(5), we obtain some valuable traveling wave solutions of (2). 

 

3. APPLICATIONS OF THE METHOD 

In this section, we utilize this method to obtain some new and more general exact travelling wave solutions of the 

ZKBBM equation and the good Bussinesq equations. 

3.1: The ZKBBM Equation 

Let us consider the ZKBBM equation in the form 

02  txxxxt ubuuauu .                (11) 

Using the traveling wave transformation tVx , (11) is converted into the following ODE for  uu  : 

0 2  ubVuuauuV .               (12)  

Eq. (12) is integrable, therefore integrating with respect to  , we obtain 

0  )-(1 2  ubVauuVC ,               (13) 

where the primes denote the derivatives with respect to   and C  is an integration constant to be determined later. 

Considering the homogeneous balance between the highest-order derivative u  and the nonlinear term 
2u  , we obtain 

2n .  Therefore, the solution of (13) is given by 

  ,))(exp())(exp( 01
2

2  u                                     (14)
      

 

where 02  . 0 and 1  are constants to be determined. 

Using (1) from (14), we obtain 

    

  

   .2))(exp( 62

))(exp( 384

))(exp( 102))(exp(6

1
2

2
2

121

2
12

2
2

3
21

4
2











u

                        (15)    
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   

   .))((2))(exp( 2       

))(exp(2))(exp(

2
001

22
120

3
21

42
2

2







u
                        (16) 

Substituting (14)-(16) into (13) and collecting all terms with the same power of ))(exp(   together, the left hand is 

transformed into a polynomial in ))(exp(  . Equating each coefficient of this polynomial to zero, we obtain an over-

determined set of algebraic equations for ,1  ,0  ,  ,  C  and V  as follows:  

0V 6 2

2

2   ba . 

02-2 10 2112   abaVVb . 

0823V 4 2

2

1201

2

222   bVaaVbbV . 

.026 2 2

1112011   bVVbVbaV

 

.0  2 1

2

200

2

0   bVbVVaC  

Solving the set of simultaneous algebraic equations by using the symbolic computation systems, such as Maple, we 

obtain the following solution: 

,  ,
4

21168 2222222422

VV
a

VVVbVbVb
C 






  

 2

182

0
a

VbVbV 



  , 

 

6
1

a

bV
   ,

 

 

6
2

a

bV
  ,                              (17) 

where   and   are arbitrary constants. 

By using (17) in (14), we obtain 

, 
 2

18
))(exp(

 

6
 ))(exp( 

 

6 2
2

a

VbVbV

a

bV

a

bV
u








             (18) 

where tVx .  

Substituting the solutions of (1) in (18), we get four types of traveling wave solutions for the ZKBBM equation (11): 

Type 1: When 042    and 0 , we obtain the hyperbolic function traveling wave solution 

 

   ,
 2

18

2

4
tanh4

12
    

2

4
tanh4

24
  

2
1

1

2
2

2

1

2
2

2

1

a

VbVbV
c

a

bV

c
a

bV
u






















































































 

where .tVx 
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Type 2: When 042    and 0 , we obtain trigonometric solution 

  

 

  .
 2

18

2

4
tan4

12
     

2

4
tan4

24
   

2
1

1

2
2

2

1

2
2

2

2

a

VbVbV
c

a

bV

c
a

bV
u






















































































 

Type 3: When 0  and 0 , we obtain exponential solution 

  
 

    2

1

)(exp1

)(exp6
  

2

2
1

1
2

3
a

VbV

c

c

a

bV
u














. 

Type 4: When 042   , 0  and 0 , we obtain rational function solution 

  
 

  

 
  

.
 2

18

2 

3

2 2

3
 

2

1

1
3

2
1

2
1

4

4
a

VbVbV

ca

cbV

ca

cbV
u























 

Type 5: When 0  and 0 , we obtain rational function solution 

  
   2

1
 

 

 6
2

1

5
a

V

ca

bV
u








. 

3.2: The Good Boussinesq Equation 

Now we would like to construct traveling wave solutions to the good Boussinesq equation by the proposed method. Let 

us consider the good Boussinesq equation in the form 

0)( 2  xxxxxxxxtt uuuu .               (19)   

The travelling wave variable tVx  permits us to change (19) into the following ODE:  

0)()1( 22  uuuV ,                (20) 

where the primes indicate the derivatives with respect to ξ . Since Eq. (20) is integrable, therefore, integrating twice we 

obtain 

   0)1( 22  uuuVC ,                (21) 

where C is an integral constant that to be determined. Balancing the highest order linear term u   and nonlinear term of 

the highest order 
2u  in (21), we obtain 2n . 

Therefore, the solution of (21) is given by 

  ,))(exp())(exp( 01
2

2  u                          (22) 
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where 0 2   . 210 ,,   are constants to be determined. 

From (22), by means of (1), we obtain 

    

  

   .2))(exp( 62

))(exp( 384

))(exp( 102))(exp(6

1
2

2
2

121

2
12

2
2

3
21

4
2











u

             (23) 

   

   .))((2))(exp( 2       

))(exp(2))(exp(

2
001

22
120

3
21

42
2

2







u
             (24) 

Substituting (22)-(24) in (21) and collecting all terms of the same power of ))(exp(   together, the left hand side is 

converted into a polynomial in ))(exp(  . Equating the coefficients of this polynomial to zero, yields a set of 

simultaneous algebraic equations for VC  and ,,,,, 210  as follows: 

06 2
22  . 

02210 2112   . 

04 382 2

22122

2

02

2

1   V . 

0 22 6 11

2

01

2

112   V . 

02 2

2

2

010

2

0   VC . 

Solving the set simultaneous algebraic equations, yields 

  0
2

0
22

0
2 8126  C , 0

2 281  V , 

,00     61  , 62  ,                               (25) 

where   and   are arbitrary constants. 

Substituting (25) into (22), we obtain 

  0

2
))(exp(6))(exp(6)(  u ,                         (26) 

where tx  281 0

2    . 

Now making use of solutions (6)-(10) of (1) in (26), we obtain more traveling wave solutions of the good Boussinesq 

equation (19) as follows: 

Type 1: When 042    and 0 , we get hyperbolic function solution 
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
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
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




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





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



c

cu

 

where tx  281 0

2    , 1c  is an arbitrary constant. 

Type 2: When 042    and 0 , we obtain trigonometric solution 
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c

cu

 

Type 3: When 0  and 0 , we obtain exponential solution 

   
 

  
.

)(exp1

)(exp 6
  02

1

1
2

3 










c

c
u  

Type 4: When 042   , 0  and 0 , we obtain rational function solution 

 

  

 
  

.
2

 3
 

22

 3
 0

1

1
3

2
1

2
1

4

4 



















c

c

c

c
u  

Type 5: When 0  and 0 , we get rational function solution 

  0

2

15  6  


cu , 

where tx  281 0

2    , 1c  is an arbitrary constant. 

4. CONCLUSIONS 

In this article, we have successfully formulated solitary waves solutions using the traveling wave solutions for the 

ZKBBM equation and the good Boussinesq equation via the  )(exp  -expansion method. The wave solutions are 

obtained through the hyperbolic, trigonometric, exponential, and rational functions. All of our results have been verified 

with Maple, with respect to the original equation and found correct. The calculation procedure of this method is simple, 

direct and constructive. In particular we can say this method is quite efficient and much effective for finding exact 

solutions of NLEEs. 
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