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ABSTRACT 
Studies on Hilbert space operators have been carried out by several researchers and mathematicians with interesting 

results obtained. A posinormal operator is one of the operators under concern with interesting characters. Properties of 

posinormal operators have not been exhausted hence this calls for intense characterization of these operators. Of great 

concern is the norm inequality involving these operators. In this paper, we give a detailed study of the norm property of 

posinormal operators when they are sefadjoint. The objectives of the study are to: establish norm inequalities for 

posinormal operators; characterize posinormal operators and; determine applications of posinormal operators in other 

fields. The methodology involved the   use of tensor products as a technical approach in determining these norm 

inequalities. The results show that the norm of a posinormal operator is equal to the norm of any normal operator when 

the operators are selfadjoint. The results obtained are very important in the classification of Hilbert space operators and 

their applications in other fields like quantum theory. 

. 

General Terms: Hilbert space, Posinormal operators, Selfadjoint, norm inequality, Applications and Quantum 

Mechanics. 
 

1. INTRODUCTION 

The concept of arbitrary vector spaces can be generalized to inner product spaces and complete inner product spaces 

called Hilbert Spaces. The inner product is a generalization of the dot product in 
n
.
 
Spectral analysis is a very broad but 

important aspect of applied functional analysis which extends to eigenvectors and Eigen values theory of a singular 

matrix. The name was introduced by David Hilbert in his original formulation of Hilbert space theory, later it was 

discovered that spectral theory  could be used to explain features of atomic spectral in quantum mechanics. We explore 

the basic mathematical physics of quantum mechanics with a focus on Hilbert Space theory and application as well as 

theory of linear operators on Hilbert Space. We show how operators can be used to represent quantum observables and 

investigate the spectrum of various linear operators. The development of Hilbert Space and its popularity were as a result 

of mathematical and physical necessity. The theory of physical law developed by Newton in 1700’s and carried sciences 
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through centuries of progress and success but later in early 1900’s Newton’s laws would not withstand the test of time 

hence the emergence of quantum mechanics as there was need for description of physical systems. Also in mathematics, 

quantum mechanics began at the time of Von Neumann when he introduced the concept of a finite dimensional vector 

space and he together with other mathematicians realized the necessity of mathematical formals we call Hilbert space.  

2. BASIC CONCEPTS AND PRELIMINARY RESULTS 

Here we start by defining some key terms that are useful in the sequel. 

Definition 2.1: A vector space V over a field F is the set V together with two operations + and x such that; Addition is 

associative, commutative, has identity elements and inverse element and multiplication has identity, scalar multiplication 

and is distributive over scalar and vector addition. 

Definition 2.2: An inner product on a vector space X is a function that takes each ordered pair (x, y) of elements of X to 

number <x ,y> of the elements of K (where K is the scalar field of X). That is, with every pair of vector (x ,y) with the 

following properties: 

1. <x , x> ≥ 0   

2. <x , x> = 0 if and only if x=0 

3. <x + y, z> = <x , z> + <y , z>     

4. <ay  ,z> = a<y , z> for all a K, where K is the scalar field of X and , 

5. <y , z> = <z , y>⃰  . 

Definition 2.3: An inner product on X defines a norm given by ‖x‖ =   = <x, x>
1/2  

 and a metric on X given by 

(x,y) = ‖x-y‖=  . 

Definition 2.4: A Hilbert space is a complete inner product space, examples of Hilbert space include, the Euclidian space 
n 
and the unitary space 

n
   

Definition 2.5: Trace is the sum of elements in diagonal of an n x n square matrix. 

Definition 2.6: Numerical range also referred to as field of values of complex n x n matrix A is the set w(A) = 

. Numerical radius is the largest absolute values of the numbers in numerical range. That is; 

r(A) = Sup  where r(A) is a norm. 

Definition 2.7: Spectral radius of a square matrix or bounded linear operator is the supremum among the absolute values 

of the elements in its spectrum.  

Definition 2.8: An operator is a function T that maps one vector space X into another vector space Y.  Normally an 

operator is required to be a linear mapping. We write to mean that T is a function with domain X and range 

contained in Y. 

Lemma 2.9: Let X, Y be normed linear spaces, and suppose that , we write either T(x) or Tx to denote the 

image of an element x . 

a. T is linear if T( )=  for every x,y  and    

b. T is injective if T(x) = T(y) implies x=y 

c. The kernel of T is ker (T)= {x } 

d. The rank of T is the vector space dimension of its range i.e. rank (T)=dim(range (T)) 

e. T is surjective if range (T) =Y 

f. T is a bijection if it is both injective and surjective. 

Proof. See [2].                                                   

Lemma 2.10: Assume that X and Y are normed linear spaces and that  is an operator, we use ║.║x to denote 

the norm on the space X, and ║.║y to denote the norm on Y. 

a. T is continuous if  fn →f  implies T(fn)→ T (f) 
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b. T is bounded if there is a finite real number C so that ║T(f)║y ≤ C║f║x  for  every f . the smallest such C is 

called the norm operator of T and is denoted by ║T║. That is T is the smallest number such that,  f

║T(f)║y ≤ ║f║x   

c. For linear operators T, we wav have the fundamental fact that continuity and boundedness are equivalent, i.e. T 

is continuous↔ T is bounded. 

Proof. See [5].                                                   

Definition 2.11: A linear functional is an operator whose range is the space of scalars that means that a functional is a 

mapping T  , so T(f) is  a number for every f . 

If  T is a linear functional then we know that it is continuous if and only if it is bounded, also we find that T(f) is a scalar, 

and the norm of T(f) is just its absolute value  |T(f)| 

Definition 2.12: Assume that X=H and Y=K are Hilbert spaces. Then H=H⃰ and K=K⃰ ,  if S:H→K then its adjoint  S⃰ 

maps K back to H. The Hilbert- adjoint therefore   S⃰ :K→H is the unique mapping S⃰ :K→H  which satisfies 

 g , <Sf, g> = <f, S⃰ g> 

Let us define an operator , which map a Hilbert space H into itself, then we can have; 

a.  is self adjoint if S = S⃰  ; S is self adjoint ↔ g , <Sf, g> = <f, Sg> 

b.  is positive , denoted S≥ 0, if <Sf ,f> is real and <Sf ,f> ≥ 0 for every   

c.  is positive definite , denoted  S 0 , if  <Sf,f>  for every f  

d. If , then we write S≥T if S –T ≥ 0. Similarly , S˃ T if  S –T ˃ 0. 

Theorem 2.13: Every bounded linear functional  on a Hilbert space H can be represented in terms of an inner product 

(x) = <x ,u>. Where u depends on  and is uniquely determined by  and has a norm ║  ║= ║u║. 

Proof. See [7, Theorem 5.4]. 

Remark 2.14: the Reisz theorem is named after Frigyes Reisz a Hungarian   mathematician and its important in the 

theory of operators on Hilbert spaces, particularly in representation of Hilbert-adjoint operator of a bounded linear 

operator. 

Let X and Y be vector spaces over the same field K (
 
or   ). A Sesquilinear functional is defines as a mapping h: X 

 →K such that for all x1, x2, x3  X, and y1, y2, y3  Y and all scalars , 

1. h(x1 + x2, y) = h(x1 , y) + h(x2  , y) 

2. h(x, y1 + y2) = h(x,y1 ) + h(x,y2 ) 

3. h( ) = (x ,y) 

4. h(x, y) = h(x ,y)  

Hilbert space is both vector spaces and a metric space, it was natural to look first at linear operators from Hilbert space to 

itself which are continuous, and these are usually called bounded linear operators. The analogue of the symmetry 

condition k(x ,y) = k(x ,y) on integral operators is the condition that a bounded linear operator T be self adjoint , which is 

to say that  <Tu, v> = <u, Tv> for all vectors u and v in the Hilbert space .  

A simple example of self- adjoint operator is the multiplication operator by a real valued function m(y); this is the 

operator M defined by the formula (Mu)y = m(y)u 

(y).  

The spectrum of an operator T is the set of complex numbers λ for which the operator T- λi does not have a bounded 

inverse and I is the identity operator on the Hilbert space in finite dimensions the spectrum is precisely the set of Eigen 

values, but in infinite dimensions this is not always so in fact, whereas every symmetric matrix has at least one Eigen 

value, a self-adjoint operator need to have no Eigen value at all. 

As a result of this, the spectral theorem for bounded self adjoint operators is formulated, not in terms of Eigen values but 

in terms of spectrum. One way of this formalism is that any self adjoint operator T is unitarily equivalent to a 
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multiplication operator (Mu)y = m(y)u(y) , where the closure of  the range of the function m(y) is the spectrum of T. this 

generalizes the statement that any real symmetric matrix is unitarily equivalent to a diagonal matrix with the Eigen value 

along the diagonal. That is, a unitary is an invertible operator that preserves the lengths of vectors.  

 

3. LITERATURE REVIEW 

There were two competing mathematical strategies that were used in connection with physical theory, that is the matrix 

mechanics and wave mechanics that resulted from von Neumann and Dirac respectively. The concept of quantum 

mechanics emerged when both the two mentioned above tried to relate the formalisms of mathematics and physics. Von 

Neumann developed the separable Hilbert space formulation of quantum mechanics see Haag R. and Kastler D (1964). In 

his strategy, he recognized the mathematical framework of matrix mechanics (what’s currently referred to as infinite 

dimensional separable Hilbert space where Hilbert space refers to a complete vector product space with an inner 

product). Dirac’s attempt to prove the equivalence of matrix and wave mechanics made essential use of delta function 

which was in broad use by physicists before Dirac and it became widely known in his textbook (Dirac 1930). To provide 

more foundation to Dirac’s formal framework, Schwartz’s theory of distribution was essential (Schwartz’s 1945; 1950-

1951) that made possible the generalization of Eigen vector decomposition theorem for self adjoint operators in rigged 

Hilbert space, for theorem see (Gelfand and Velenken. 1964; pp 119-127). The decomposition principle provides a 

rigorous way to handle observables such as position and momentum in a manner in which they are presented in Dirac’s 

formalism. 

Quantum mechanics is therefore regarded as a general theoretical framework of physical theories It consists of 

mathematical core which becomes physical theory when adding a set of correspondence rules telling us which 

mathematical objects we use in different physical situation. In contrast to classical physical theories, these corresponding 

rules are not intuitive as linear operators on Hilbert spaces are quite familiar (Michael M.W, 2012-8). It’s often useful to 

divide physical experiments into two, that is preparation and measurement and this gives out a clear distinction between 

quantum and classical mechanics since in the latter we don’t talk about measurement. The division of a physical 

experiment into a preparation on state and measurement of an observable quantity is reflected in mathematical structure 

of quantum mechanics. Observables are represented by Hermitian elements taken from algebra and assume that each 

element has an adjoint. The algebra is usually represented in terms of bounded linear operators  acting on a Hilbert 

space H. A state in turn corresponds to a linear functional mapping observables onto a real number and hence words 

‘state’ and ‘observable’ are used to refer to both physical concept and mathematical operator. And therefore in this text 

we explore the basic mathematical physics of quantum mechanics with a focus on Hilbert Space theory and application 

as well as theory of linear operators on Hilbert Space. We show how operators can be used to represent quantum 

observables and investigate the spectrum of various linear operators.  

 

4. METHODOLOGY 

For a successful completion of this research, good background knowledge of the theory of operators, General Topology 

and Functional Analysis is crucial. We shall restate some known results which we may be useful to our work. We shall 

need a lot of information in the internet, especially the journals. We might be required to visit other libraries. For our 

presentations we shall use operator theory and analysis books while for the prerequisites on we shall use the ideas in 

Hilbert space problem book. Interaction with other mathematicians will be useful so we shall need to attend conferences 

locally and internationally. Lastly, we shall use the technical approach of tensor products in solving the stated problem. 

Initially, we examine the algebraic properties of tensor products, their norm properties and applicability in our case 

before applying it in finding a solution to our problem. 

 

5. RESULTS 

Theorem 5.1: The norm of an inner product space X satisfies the following properties; 

‖x +y‖
2
 + ‖x -y‖

2
 = 2(‖x‖

2
 + ‖y‖

2
). 

Proof. Suppose x , y are orthogonal vectors in X, then,  
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‖x +y‖
2
 = <x + y, x + y> 

 = ‖x‖
2
 + ‖y‖

2
 + <x , y> + <y , x> 

 = ‖x‖
2
 + ‖y‖

2
.
    

Remark: if a norm does not satisfy the parallelogram equality, then it cannot be obtained from an inner product space. 

Theorem 5.2: The Cauchy Schwartz inequality states that if x ,y X, then; |<x , y>|  ‖x‖‖y‖. 

Proof.  Let , if y=0, then both sides of the Cauchy Schwartz inequality will be equal to 0 and the inequality will 

hold. Suppose y , consider the orthogonal decomposition (write x as a scalar multiple of y plus a vector w orthogonal 

to y), x= y + w where w is orthogonal to y. By the Pythagorean theorem,‖x‖
2 

= ║ y║
2
 + ‖w‖

2
 =  

2
y + w 

≥  y. Multiplying both sides of the above equation by ‖y‖
2
 and then taking square roots yields the Cauchy Schwartz 

inequality.
 
The triangular inequality states that the length of any side of a triangle is less than the sum of  the lengths of 

the other two sides. If x ,y then ,║x + y║≤ ║x║+║y║.This theorem can be used to show that the shortest path 

between two points is a straight line segment. In inner product space, if xn →x and yn→ y, then ˂ xn ,yn˃ →˂ x, y ˃. See 

[2, Lemma 3.2].
 

Remark 5.3: An inner product space (or a pre-Hilbert space ) is a vector space with inner product  (x ,y) defined on it. 

An element x of an inner product space X is said to be orthogonal to an element y  if <x,y> =0. It is denoted by x

and we say that x and y are orthogonal. Similarly, for subsets A,B  X, we write x  if x for all a and  A if  

a  for all  a  and all b . 

From this point and in the sequel, we give results on posinormal operators on Hilbert spaces. Also all the 

complete fuzzy metric spaces herein are taken to be Hilbert spaces unless otherwise stated. 

Theorem 5.4: Let T be an A-Contraction on a complete non - Archimedean fuzzy metric space X  . Then T  has a 

unique fixed point in X  such that the sequence  0
nT x  converges to the fixed point, for any 0x X . 

PROOF. Fix 0x X  and define the iterative sequence  nx  by 0
n

nx T x   (equivalently, 1n nx T x    ) 

where 
nT  stands for the map obtained by n - time composition of T  with T . Since T  is an A-Contraction,   

A   such that the definition 1.8 holds, i.e., 

          , , , , , , , , , , 6T x T y t x y t x T x t y T y t      

for all ,x y X . Now, 

   1 1, , , ,n n n nx x t T x T x t    

      1 1 1, , , , , , , ,n n n n n nx x t x T x t x T x t       

      1 1 1, , , , , , , ,n n n n n nx x t x x t x x t       

   1 1, , , ,n n n nk x x t x x t     

Continuing this way, we get 

   1 0 1
1

, , , ,n n n
x x t x x t

k
    

 1lim , , 1n n
n

x x t 


   
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We now verify that   nx  is Cauchy sequence. 

     1 1, , , , , ,n n p n n n p n px x t x x t x x t          

 

 lim , , 1 1 1n n p
n

x x t 


      

 lim , , 1n n p
n

x x t 


   

Thus  nx  is Cauchy sequence in X . Since X  is complete, there exists x X  such that 

nx x  as n . 

Again, with x x  and ny x , the inequality ( 6 ) gives  

   1, , , ,n nT x x t T x T x t    

      , , , , , , , ,n n nx x t x T x t x T x t       n N  . 

By allowing n    and using the continuity of  , we get  

        , , , , , , , , , ,T x x t x x t x T x t x x t             

i.e.,     , , 1 , , , , 1T x x t T x x t       

 , , 1k T x x t      , , 1T x x t      T x x   . 

Now, if  w X  satisfies, T w w , then by taking x w  and y x  in ( 6 ) we get 

   , , , ,w x t T w x t    

      , , , , , , , ,w x t T w w t T x x t       

  , , , 1 , 1w x t    

 , , 1k w x t      , , 1w x t     w x  . 

This completes the proof. 

THEOREM 4.6 Let A   and  nT  be a sequence of self-maps on the complete non - Archimedean fuzzy 

metric space  , ,X    such that  

          , , , , , , , , , , 7i j i jT x T y t x y t x T x t y T y t      

for all ,x y X  and  (0 , 1)k . Then  nT  has a unique common fixed point in X . 

PROOF.  Taking any 0x X  , we define 1n n nx T x   for each n N . Now from (7), we have 

   1 2 1 0 2 1, , , ,x x t T x T x t   

          0 1 0 1 0 1 2 1, , , , , , , ,x x t x T x t x T x t     
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         0 1 0 1 1 2, , , , , , , ,x x t x x t x x t     

   1 2 0 1, , , ,k x x t x x t    

Similarly, we have 

   2 3 1 2, , , ,k x x t x x t   

     2 3 1 2 0 12

1 1
, , , , , ,x x t x x t x x t

k k
      

Inductively, we have 

   1 0 1
1

, , , ,n n n
x x t x x t

k
    

 1lim , , 1n n
n

x x t 


   

We now verify that   nx  is Cauchy sequence. 

     1 1, , , , , ,n n p n n n p n px x t x x t x x t          

 

 lim , , 1 1 1n n p
n

x x t 


      

 lim , , 1n n p
n

x x t 


   

Therefore  nx  is Cauchy sequence in the complete fuzzy metric space X ,  so it converges to x X . Next, 

     1 1, , , , , ,n m m nx T x t x x t x T x t         

   1 1, , , ,m m m nx x t T x T x t      

        1 1, , , , , , , , , ,m m m m m nx x t x x t T x x t T x x t           

        1 1, , , , , , , , , ,m m m m nx x t x x t x x t T x x t           

Letting m , recalling that   is continuous on
3R , we obtain 

          , , , , , , , , , , , ,n nT x x t x x t x x t x x t T x x t                 

    , , 1 , 1 , , ,n nT x x t T x x t        

 , , 1nT x x t     nT x x n N     . 

For uniqueness of the fixed point 
'x , we suppose nT y y  for some y   X and for all n N .  

Then by ( 7 ), we have 
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   , , , ,i jx y t T x T y t    

             , , , , , , , ,i jx y t x T x t y T y t       

         , , , 1 , 1x y t x y      . 

 

THEOREM 4.7 Let X be a set with two non - Archimedean fuzzy metrics   and   satisfying the following 

conditions: 

( i )    , , , ,x y t x y t    for all ,x y X . 

( ii ) X  is complete with respect to   . 

( iii ) ,S T  are self maps on X  , such that T  is continuous with respect to    and 

         , , , , , , , , , ,T x S y t x y t x T x t y S y t      

for all ,x y X  and for some A  . 

 Then S  and T  have a unique common fixed point. 

 

PROOF. . Take any 0x X  . For each n N  , we define 1n nx S x  , when n  is even and 

1n nx T x  , when n  is odd. Then, by inequality in the above condition ( iii ) we get 

    1 2 0 1, , , ,x x t T x S x t    

                 0 1 0 0 1 1, , , , , , , ,x x t x T x t x S x t     

                 0 1 0 1 1 2, , , , , , , ,x x t x x t x x t     

   1 2 0 1, , , ,k x x t x x t     

In general, for any n N  we get ( as in the proof of the of the previous theorem) that  

   1 0 1
1

, , , ,n n n
x x t x x t

k
    for some (0 , 1)k . 

     1 1 0 1
1

, , , , , ,n n n n n
x x t x x t x x t

k
        ( By the condition (i) )  

 1lim , , 1n n
n

x x t 


   

This implies that  nx  is a Cauchy sequence in X  with respect to   and hence by condition ( ii), we have 

 lim , , 1n
n

x x t


   for some x X . 

Since T  is given to be continuous with the respect to   we have  

     2 1 21 lim , , lim , , , ,n n
n n

x x t T x x t T x x t  
 

       
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T x x   . 

Now , by condition ( iii ) 

   , , , ,x S x t T x S x t       

                   , , , , , , , ,x x t x T x t x S x t           

              1 , 1 , , ,x S x t     

S x x   . 

Thus x  is a common fixed point of S  and T . 

For the uniqueness, let y be any common fixed point of S  and T  in X . Then by condition ( iii ) ,  

   , , , ,x y t T x S y t    

 (
'x  , y, t ) =  ( T

'x  , Sy , t )  

             , , , , , , , ,x y t x T x t y S y t     

         , , , 1 , 1x y t   

 , , 1x y t    x y  . 

This completes the proof. 

 

6. APPLICATIONS IN QUANTUM MECHANICS 

A beautiful application of the spectral theorem was found by John von Neumann. Problems regarding the relationship 

between time and space had arisen in thermodynamics and elsewhere and the expectation that after a given interval the 

averages of time and space shall agree was solved when Von Neumann came up with theorem of operator theory   

regarding the Hilbert space. This theorem can be deduced from a spectral theorem for unitary operators which are 

analogous to the spectral theorem for self-adjoint operators. 

Von Neumann realized that Hilbert spaces and their operators provide the correct mathematical tools to formalize the 

laws of quantum mechanics, introduces in the 1920’s by Heisenberg and Schrodinger . The state of a physical system at 

an instant of time is the list of all its future behavior, basically this is the list of the position and momentum vectors of all 

the constituent particles. 

In von Neumann’s formulation of quantum mechanics, to each physical system there is associated a Hilbert space H, and 

a state of the system is represented by a unit vector u in H. Vectors which differ only by multiplication with a scalar 

determine the same state. Associated to each observable quantity for example the total energy of the system or even the 

momentum of  a particle within a given domain are self-adjoint operator Q on H whose spectrum is the set of all 

observed values of that quantity. 

This brings out the clear relationship between state and observable that is, when a system is in a given state described by 

a unit vector u in H, the expected value of observable quantity corresponding to a given self-adjoint operator Q is the 

inner product <Qu, u> . The relationship between states and observables reflects the self contradictory behavior of 

quantum mechanics;  

Example: In quantum mechanics, the observables of a system are represented by a space A of linear operators on a 

Hilbert space H. A state of a quantum mechanical system is a linear functional on the space A of observables with the 

following two properties: 

i. u(A*A) ≥ 0 for all A A, 

ii. u(I) = 1 
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The number u(A) is the expected value of the observable A when the system is in the state w Condition (i) is called 

positivity, and condition (ii) is called normalization. To be specific, suppose that H = 
n
 and A is the space of all n x n 

complex matrices, then A is a Hilbert space with the inner product given by <A, B> = tr A*B 

A measurement of an observable quantity will produce a determinate outcome if and only if the system is in a state which 

is an Eigenvector for the operator associated for that quantity. A distinctive feature of quantum theory is that the 

operators associated to different observables typically do not commute, then they will typically have no Eigenvector in 

common, and as a result, simultaneous measurements of two different observables will typically not result in determinate 

values for both of them. 

 

 

 

    7.        CONCLUSIONS 

Studies on Hilbert space operators are very significant in analysis and applications in quantum mechanics. Results from 

operator theory are fundamental in formulating principles guiding quantum mechanics and its techniques. 
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