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ABSTRACT 

The bi-level programming problem (BLP) is a suitable method for solving the real and complex problems in applicable 

areas such as management, economics, policies and planning and so on. There are several forms of the BLP as an NP-

hard problem. The linear-quadratic bi-level programming (LQBP) and the linear-fractional bi-level programming (LFBP) 

are important forms of the BLP. In this paper, we attempt to develop two effective approaches, one based on modified 

simplex method and the other based on the genetic algorithm for solving the LQBP and LFBP. To obtain efficient upper 

bound and lower bound we employ the Karush -Kuhn -Tucker (KKT) conditions for transforming the LQBP into a single 

level problem. By using the proposed penalty functions, the single problem is transformed to an unconstraint problem 

and then it is solved by modified simplex method and genetic algorithm. The proposed approach achieves efficient and 

feasible solution and it is evaluated by comparing with references.  

Keyword: The linear-quadratic bi-level programming, the penalty function method, simplex method,  Karush-Kuhn–

Tucker conditions.  

 

1. INTRODUCTION 
It has been proved that the BLP is NP- Hard problem even to seek for the locally optimal solutions (Bard ,1991; Vicente, 

et al., 1994)[3, 23].  Nonetheless the BLPP is an applicable problem and practical tool to solve decision making 

problems. It is used in several areas such as transportation, finance and so on. Therefore finding the optimal solution has 

a special importance to researchers. Several algorithms have been presented for solving the BLP (Yibing, et al., 2007; 

Allende & G. Still, 2012; Mathieu, et al., 1994; Wang, et al., 2008; Wend & U. P. Wen, 2000; Bard, 1998,  Facchinei, et 

al.,)[30, 1, 17, 25, 24, 4, 6]. These algorithms are divided into the following classes:  Transformation methods (Luce, et 

al., 2013; Dempe & Zemkoho, 2012) [15, 5], Fuzzy methods (Sakava et al., 1997; Sinha 2003; Pramanik & T.K. Ro 

2009; Arora & Gupta 2007; Masatoshi & Takeshi.M 2012; Zhongping & Guangmin.W 2008, Zheng, et al., 2014) [20, 

21, 19, 2, 16, 32, 33], Global techniques (Nocedal & S.J. Wright, 2005; Khayyal, 1985; Mathieu, et al., 1994; Wang et 
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al., 2008, Wan, et al., 2014, Xu, et al., 2014, Hosseini, E and I.Nakhai Kamalabadi., 2014, ) [18, 13, 17, 25, 27, 28, 10, 

34], Primal–dual interior methods (Wend & U. P. Wen, 2000) [24], Enumeration methods (Thoai, et al., 2002) [22], Meta 

heuristic approaches (Hejazi, et al., 2002; Wang et al., 2008; Hu, et al., 2010;  Baran Pal, et al., 2010; Wan et al., 2012; 

Yan, et al., 2013; Kuen-Ming et al., 2007, Hosseini, E and I.Nakhai Kamalabadi., 2013, He, X and C. Li, T. Huang, 

2014) [11, 25, 12, 4, 26, 29, 14, 8, 9, 7]. In the following, these techniques are shortly introduced. 

1.1. Transformation methods 

An important class of methods for constrained optimization seeks the solution by replacing the original constrained 

problem with a sequence of unconstrained sub-problems or a problem with simple constraints. These methods are 

interested by some researchers for solving BLPP, so that they transform the follower problem by methods such as penalty 

functions, barrier functions, Lagrangian relaxation method or KKT conditions. In fact, these techniques convert the 

BLPP into a single problem and then it is solved by other methods [3, 4, 22, 23, 32].  

1.2. Meta heuristic approaches 

Meta heuristic approaches are proposed by many researchers to solve complex combinatorial optimization. Whereas 

these methods are too fast and known as suitable techniques for solving optimization problems, however, they can only 

propose a solution near to optimal. These approaches are generally appropriate to search global optimal solutions in very 

large space whenever convex or non-convex feasible domain is allowed. In these approaches, BLPP is transformed to a 

single level problem by using transformation methods and then meta heuristic methods are utilized to find out the optimal 

solution [15, 16, 17, 18, 19, 25, 33].  

  The remainder of the paper is structured as follows: in Section 2, basic concepts of the linear quadratic and linear 

fractional are introduced. The first presented algorithm is proposed in Section 3. In Section 4 and computational results 

are presented for approach in Section 5. Finally, the paper is finished in Section 6 by presenting the concluding remarks.  

2. The concepts of the problems 

We research two special classes of bi-level programming: linear-quadratic bi-level programming (LQBP) and Linear-

fractional bi-level programming (LFBP). The LQBP is formulated as follows [16]: 

 

 

Where                                                                                                                                                       and 

f (x, y), g (x, y) are the objective functions of the leader and the follower, respectively. Also   

                                is symmetric positive semi –definite matrix. 
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 Then the follower problem of the LQBP is   
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The LFBP problem is formulated as follows [21]: 

    

 

 

 

Which          

 

The feasible region of the LQBP and LFBP problems is                                                                                     

 

On the other hand if x be fixed, the feasible region of the follower can be explained as  

 

Based on the above assumptions the follower rational reaction set is 

 

Where the inducible region is as follows  

 

Finally the bi-level programming problem can be written as 
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Definition 1: 

          is a feasible solution to bi-level problem if 

Definition 2: 

                is an optimal solution to the problem if  

 

 

3.  Modified simplex algorithm by penalty function method for LQBP and 

LFBP 

Penalty functions transform a constrained problem into a single unconstrained problem or into a sequence of 

unconstrained problems. In this method the constraints are replaced into the objective function via a penalty parameter in 

a way that penalizes any violation of the constraints. In general, a suitable function must incur a positive penalty for 

infeasible points and no penalty for feasible points. Also the penalty function method is a common approach to solve the 

bi-level programming problems. In this kind of approach the lower level problem is appended to the upper level objective 

function with a penalty. 

 Since in problem (2), most of the equality constraints are not linear then it concerns that the above problem is non-

convex programming, which indicates there are local optimal solutions that they are not global solution. Therefore 

solving the problem (2) is complicated and we use the following method for solving this problem.We use a penalty 

function to convert problem (2) to an unconstraint problem. Consider the problem (2), we append all constraints to the 

upper level objective function with a penalty for each constraint, then we obtain the following penalized problem. 

 

 

 

  

Which N is a large positive number and M is a matrix of large positive numbers and  

We now show that two problems (2), (11) have a same optimal solution according to the following theorem, and then 

solve the problem (11) instead problem (2) using proposed modified simplex method. Above method is satisfied for 

problem (3) too. 

  We now propose a theorem which establishes the convergence of algorithms for solving a problem of the form: 

minimize 𝑓(𝑥) subject to 𝑥 ∈ 𝑅𝑛 . We show that an algorithm that generates n linearly independent search directions, and 

obtains a new point by sequentially minimizing f along these directions, converges to a stationary point. The theorem 

also establishes the convergence of algorithms using linearly independent and orthogonal search directions.  

same optimal solution according to the following theorem. 

Theorem 3.1: 

Consider the following problem: 
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      𝑕𝑗   𝑥 = 0,  j=1,2,…,l, 

where  𝑓, 𝑔1 , … , 𝑔𝑚 , 𝑕1 , … , 𝑕𝑙   are continuous functions on  𝑅𝑛   and  𝑋  is a nonempty set in 𝑅𝑛 .  Suppose that the 

problem  

has a feasible solution, and 𝛼 is a continuous function as follows: 

𝛼 x =  ∅[𝑔𝑖(𝑥)]𝑚
𝑖=1 +  ∅[𝑕𝑖(𝑥)]𝑙

𝑖=1   (13) 

where  

∅ 𝑦 = 0  if  y ≤ 0, ∅ 𝑦 > 0  𝑖𝑓  𝑦 > 0.  (14) 

∅ 𝑦 = 0  if  y = 0, ∅ 𝑦 > 0  𝑖𝑓  𝑦 ≠ 0.  (15) 

 Then,  

inf 𝑓 𝑥 : 𝑔 𝑥 ≤ 0,   𝑕 𝑥 = 0, 𝑥 ∈ 𝑋 

= inf 𝑓 𝑥 + µ𝛼 𝑥 : 𝑥 ∈ 𝑋  
(16) 

where µ is a large positive constant (µ → ∞). 

Proof: 

Let y be a feasible point and             . Let       be an optimal solution to the problem to minimize  

                        subject to                           If                                            , because                

are non-increasing functions, then, we must have  

Now we show that                       By contradiction, suppose that,                       then 

 

The above inequality is not possible in view of feasibility of y. thus,                      for all  

                                               Since            is arbitrary,                        as 

Since                   as                    then                         that is,       is a optimal solution to the original problem and  

that                                    note that                                                      As               

Both approach             and hence,                  approaches zero. This completes the proof.   

According to the above theorem two problems (2), (11) have a same optimal solution. The modified simplex method is 

proposed as follows. 

Steps of the modified simplex algorithm are proposed as follows:  

Let the main iteration number, k=0 and the objective function value at the optimal solution at the k-th iteration  
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Step 1:  

If                                   in the problem (11) is infeasible go to Step 5. Otherwise find an arbitrary basic feasible solution                             

of                            Let                        be the associated basic inverses      . The variables are divided into two separate 

classes, basic and non-basic variables that basic variables can be written according to the non-basic variables as follows:  

 

 

 

Where                           are matrixes which correspond with the columns of the non-basic variables         

                             respectively. 

Step 2:  

 

By replacing equation                                                                             into the objective function of the  

problem (11), this objective function can be written as follows:  

 

Which       is the current value of the objective function. For all non-basic variables we calculate  

According to the usual rule in the simplex method if all                  are positive, the simplex method will be finished and 

then we go to Step 4. Otherwise go to Step 3. 

Step 3: 

According to the usual rule in the simplex method enter the non-basic primal variable with the smallest                 or the 

non-basic dual variable with the largest                into the basis. Also the leaving variable is determined using the usual 

minimum ratio rule: 

 Then go to Step 1. 

Step 4: 

If        involves       or N, go to Step 5. Otherwise let k=k+1,                   and go to Step 1.                  

Step 5:  

If k=0 then the problem (11) is infeasible. Otherwise the obtained solution at the last iteration is the optimal solution. 

                                       

4. Computational results 
Two following examples are solved by use of the genetic algorithm proposed in this article to illustrate the feasibility and 

efficiency of the proposed algorithm. The first example is LQBP and the second example is LFBP.  

Example 1 

Consider the following linear quadratic bi-level programming problem [16].  
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Using KKT conditions following problem is obtained: 

 

 

 

 

 

 

 

 

Step 1: the following problem is feasible because (0, 0, 0, 0) is a feasible solution. 
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Therefore the associated basic inverses as follows: 

 

 

 

 

Step 2: By replacing the basic variables into (21), the objective function is obtained.  
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Step 3: According to (15),        has the smallest               therefore      should be entered into the basis.  Also the leaving 

variable is       because of the usual minimum ratio rule: 
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 Now the first main iteration has been finished, but the algorithm has not been finished yet. Therefore we continue this 

process until the optimal solution is obtained after seven main iterations according to the Table 1.  
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It is easy to show that by relaxing the u’s and v variables (by fixing them on zero or one) in the main problem, we can 

obtain upper bounds for the problem which might be not promising as expected. By enumeration of possible relaxation 

the best upper bound is shown in Table 1.  

 

 

Table 1 comparison the best solutions - Example 1 

 

According to the Table 1, the best solution by the proposed algorithm equals to the optimal solution exactly. It can be 

seen that the proposed method is efficient and feasible from the results. 

Example 2 

The following problem is linear fractional bi-level programming problem [13].  
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Appling  KKT conditions the above problem convert to this problem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By enumeration of possible relaxation, the best upper bound is 

 

 

In genetic algorithm the initial population is created according to the proposed rules in section 4. Also the best solution is 

produced by the following chromosome: 

 

 

 

 

0011100 

Choosing                                                                                        by the proposed genetic algor ithm, the optimal solution 

is obtained. The best solution is                                           and the upper level’s objective function is 1.66 also the lower 

level’s objective function is 8.66. The results are all close to the exact values in Ref [12, 21]. Behavior of the variables by 

modified simplex method has been show in figure 1. 

5. Conclusion and future work 
In this paper, we used the KKT conditions to convert the problem into a single level problem. Then we presented a 

genetic method and a modified simplex method for solving linear-quadratic bi-level programming and linear-fractional 

bi-level programming problems. Comparing with the results of previous methods, both algorithms have better numerical 

results and present better solutions in much less times. The best solutions produced by proposed algorithms are feasible 

unlike the previous best solutions by other researchers.  

In the future works, the following should be researched:  

(1) Examples in larger sizes can be supplied to illustrate the efficiency of the proposed hybrid algorithm. 

(2) Research to use other unconstraint optimization methods such as Quasi – Newton for solving linear BLP. 
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(3) Showing the efficiency of the proposed algorithms for solving other kinds of BLP. 
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